Thomas Markovich, Ph.D.

Thomas Markovich, Ph.D.
Principal Scientist - AI Research & Development at Forge.AI

Recent Posts

NeurIPS 2018 Recap by Forge.AI

Posted by Thomas Markovich, Ph.D. on December 11, 2018

With quick reflexes and a fortunate server error, I was lucky enough to get a ticket to the 2018 Neural Information Processing Systems Conference (NeurIPS). It was with great excitement that I attended to represent Forge.AI this year. NeurIPS provides its attendees with a week of talks, demonstrations, and incredible networking opportunities. I was able to catch up with old friends, and meet new friends and potential collaborators. For those of you who weren’t lucky enough to score a ticket, I thought it would be useful to provide a collection of highlights from the conference.

Read More

Tags: Machine Learning, Technology, AI, NeurIPS

Knowledge Graphs for Enhanced Machine Reasoning at Forge.AI

Posted by Thomas Markovich, Ph.D. on March 14, 2018

Introduction


Natural Language Understanding at an industrial scale requires an efficient, high quality knowledge graph for tasks such as entity resolution and reasoning. Without the ability to reason about information semantically, natural language understanding systems are only capable of shallow understanding. As the requirements of machine reasoning and machine learning tasks become more complex, more advanced knowledge graphs are required. Indeed, it has been previously observed that knowledge graphs are capable of producing impressive results when used to augment and accelerate machine reasoning tasks at small scales, but struggle at large scale due to a mix of data integrity and performance issues. Solving this problem and enabling machine driven semantic reasoning at scale is one of the foundational technological challenges that we are addressing at Forge.AI.

To understand the complexity of this task, it's necessary to define what a knowledge graph is. There are many academic definitions floating around, but most are replete with jargon and impenetrable. Simply said, a knowledge graph is a graph where each vertex represents an entity and each edge is directed and represents a relationship between entities. Entities are typically proper nouns and concepts (e.g. Apple and Company, respectively), with the edges representing verbs (e.g. Is A). Together, these form large networks that encode semantic information. For example, encoding the fact that "Apple is a Company" in the knowledge graph is done by storing two vertices, one for "Apple" and one for "Company", with a directed edge originating with Apple and pointing to Company of type "isA". This is visualized in Figure 1:

Read More

Tags: AI, Machine Learning, Reasoning, entity resolution, NLU, embeddings, knowledge graph, Technology, NLP, Data